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Abstract

This work singles out and examines the downgrading property of supermodular
functions which is crucial to several results in lattice programming. We introduce and
study classes of functions which satisfy some variant of the downgrading property
and therefore preserve most of the properties of supermodular functions which are
of interest to lattice programming.

1 Introduction

Initiated by Topkis and Veinott about twenty years ago, lattice programming has by now
greatly increased its importance as a technique to obtain qualitative insights in several
different areas of research, ranging from Economics to Operations Research. Despite
some early generalizations (see [10]), however, most of its applications until recently
have been confined to just a few classes of functions characterized by some mathematical
property.

The main instance of such property has an ubiquitous nature and it has been used
under different names in several fields. In the area of lattice programming, the preva-
lent terminology refers to it as supermodularity or superadditivity. The first term was
proposed by Edmonds and is related to some questions in combinatorial optimization.
The second one has been especially advocated by Veinott. Unfortunately, the first choice
bears no linguistic relationships with its rôle in lattice programming, while the second
one conflicts with different usages of the same term. While regretting the absence of a
satisfactory established terminology , we will choose to use the term “supermodularity”
whose link to lattice programming seems better entrenched.

Ongoing work from Veinott [11] and Milgrom, Roberts and Shannon [6] has made
increasingly clear that most results of lattice programming can be generalized to a class of
functions far larger than the supermodular ones. Unsurprisingly, such class of generalized
supermodular functions departs even further from the generalizations currently under
study in combinatorial optimization (see for instance [7]), indicating a possible fading
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of the initial overlapping between lattice programming and combinatorial optimization
where supermodular functions originated (see [4]).

The purpose of this work is to single out a class of generalized supermodular functions
whose properties are fundamental for lattice programming and to study some subclasses
of these. To this aim, we derive a property of supermodular functions (independently
noticed also by Milgrom, Roberts and Shannon [6]), which appears to be crucial for
some key results in lattice programming. We call this the downgrading property, since
it can be interpreted as a condition guaranteeing that if a function decreases when
moving in some particular direction, it must also decrease when moving in another
corresponding direction. The kind of decrease specifies five different variants of the
downgrading property. We then define a few subclasses of functions satisfying some
version of the downgrading property. In particular, we examine the relationships among
subclasses satisfying a symmetry condition.

The work is organized as follows. The next section introduces several preliminary
definitions and some notation. Section 2 examines the downgrading property and consid-
ers its rôle in four key results of lattice programming. Section 3 studies some subclasses
of generalized supermodular functions, with particular reference to the symmetric ones.

1.1 Preliminary definitions and notation

A partial order relation on a set X is a binary relation �: X×X → X which is reflexive,
transitive and antisymmetric. A partially ordered set (X; �) consists of a nonempty set
X endowed with a partial order relation �. When there is not ambiguity, we will say
for short that X (rather than (X; �)) is a poset, meaning that the partial order relation
is understood. In particular, unless differently specified, R will always be assumed to
be endowed with the usual ≥ order relation. The derived binary relation �, � and ≺
are defined in the obvious way. If X is a poset, we say that the elements of the pair
(x, y)∈X × X are comparable if x � y or y � x (or both). If x, y are not comparable,
we write x‖y.

Let S be a subset of a poset X. We call S a subposet. An element x∈X is said to
be an upper bound for S if x � y,∀y∈S. An upper bound x of S is called the supremum
of S if, for any upper bound y of S, it is y � x. It is easy to prove that, if it exists, the
supremum of S is unique; we will denote it by x = ∨S. Lower bounds and infima are
analogously defined; the infimum of a set S is written ∧S. Such similarity in definitions
stems from a more general duality principle, stating that if we define � as the dual
ordering of �, any statement about a poset (X; �) is true in its dual poset (X; �).

If it exists, we denote by their join x ∨ y (respectively meet x ∧ y) the supremum
(infimum) of two elements x, y of a poset X. If a subset L of a poset X contains at least
the meet or the join of each pair of its elements, we call it a subquasilattice. If it always
contains the join (dually, the meet) of each pair of its elements, we say that L is a join
sublattice (meet sublattice). If L is either a join sublattice or a meet sublattice, we call it
a subsemilattice. If it contains both the join and the meet of each pair of its elements, we
call it a sublattice. Finally, if all its elements are comparable, we say that L is a subchain.
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If a poset X is a sublattice of itself, we omit the prefix “sub” and simply call it a lattice.
Quasilattices, join and meet lattices, semilattices, and chains are analogously defined. A
(sub)chain is a (sub)lattice; a (sub)lattice is a join (sub)lattice and a meet (sub)lattice;
any of these latter two is a (sub)semilattice; and a (sub)semilattice is a (sub)quasilattice.

A (sub)poset X is chain complete if ∨S and ∧S exist and are contained in X for any
nonempty subchain S ⊆ X. A (sub)lattice L is complete if ∨S and ∧S exist and are
contained in L for any nonempty subset S ⊆ L. A (sub)lattice is complete if and only
if it is chain complete. Given a lattice L and a function f : L → R, we define for any
α∈R its upper set of level α to be Uα = {x∈L : f(x) ≥ α} and we say that f is upper
chain complete if all its upper level sets (which are not necessarily sublattices) are chain
complete. Given a (chain) complete lattice L, we say that the function f : L → R is
order upper semicontinuous if lim supx∈C,x↓∧C f(x) ≤ f(∧C) and lim supx∈C,x↑∨C f(x) ≤
f(∨C), for any chain C in L.

Given two comparable elements y � x in a lattice L, we define the open interval (x, y)
as the set {z∈L : y � z � x} and the closed interval [x, y] as the set {z∈L : y � z � x}.
We speak generally of an interval when it is not specified whether the endpoints belong
to the interval. Given a finite number of posets (Xi,�i) (i = 1, . . . , n) we define their
direct product to be the set L = {x = (x1, . . . , xn) : xi∈Xi; i = 1, . . . , n} ordered by the
rule that x � y if and only xi �i yi, for all i = 1, . . . , n. The direct product of n lattices
is still a lattice. In Section 3.5, we will consider the direct product of n chains. The most
common example of this is the lattice Rn with the natural componentwise ordering ≥
given by x ≥ y if and only if xi ≥ yi, for all i = 1, . . . , n. Remark that an interval in
(Rn; ≥) is the direct product of n subchains of R.

Let f : X → Y be a mapping which associates to any element x of a chain (X; �1) an
element f(x) in another chain (Y ;�2). We say that f is nondecreasing if x �1 y implies
f(x) �2 f(y), for all x, y ∈ X. Similarly, we say that f is increasing if x �1 implies
f(x) �2 f(y), for all x, y ∈X. Nonincreasing and decreasing functions are analogously
defined.

Let J =<a, b> denote any interval in R, where we have used the angular brackets
to denote that J can be open or closed on either side. Given a function f : X → Y ,
let Ran(f) ⊆ Y denote the range of the function f . If Y = R, we denote by Co(f)
the convex hull of Ran(f). We denote the extended real line R ∪ {−∞,+∞} by R;
analogously, we will write R+ for the extended nonnegative real line R+ ∪ {+∞} and
R− for the extended nonpositive real line. The algebraic and ordinal properties of R are
defined in the usual way.

Let X be a set. A binary operation on X is a function ∗ from X × X into X. If
the restriction to X × X of a function ∗ is a binary operation on X, then we say that
∗ is closed under ∗. If there exists an element e ∈ X such that x ∗ e = e ∗ x = x for
all x∈X, we say that e is an identity for ∗. If there exists an element o∈X such that
x ∗ o = o ∗ x = o for all x∈X, we say that o is a null element for ∗. If they exist, both
identity and null element are unique.

If ∗ is a binary operation on X, we define for each element x∈X the horizontal section
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h∗
x : X → X by h∗

x(y) = y∗x and the vertical section v∗x : X → X by v∗x(y) = x∗y. If X is
also a chain, we say that ∗ is nondecreasing if all its sections are nondecreasing and that
it is increasing if they are increasing. If ∗ has a null element o, it cannot be increasing
over the sections h∗

o and v∗o . Therefore, we call a binary operation weakly increasing if all
its sections with the possible exception of these two are increasing. An increasing binary
operation is weakly increasing; and a weakly increasing one is nondecreasing.

Given the binary operation ∗ on the set X, we say that ∗ is associative if (s ∗ t) ∗u =
s ∗ (t ∗ u) for all s, t, u∈X; that it is commutative if s ∗ t = t ∗ s for all s, t∈X; and that
it is medial if (s ∗ t) ∗ (u ∗ v) = (s ∗ u) ∗ (t ∗ v) for all s, t, u, v∈X. This latter property
is also known as bisymmetry. Furthermore, we say that ∗ is idempotent if s ∗ s = s, for
all s∈X and that it is cancellative if all its horizontal and vertical sections are injective.
Finally, if X is the closed interval [a, b] ⊂ R, we say that ∗ is triangular if it is associative,
commutative, nondecreasing and has either a or b as identities. It can be shown that
if b (respectively, a) is the identity of a triangular operation, then a (b) must be a null
element for it. To distinguish these two cases, we speak respectively of triangular norms
and conorms.

2 The downgrading property

2.1 Downgrading functions

We recall the following definition of a class of functions of great interest in lattice pro-
gramming and combinatorics.

Definition 1 Let L be a lattice. We say that the function f : L → R is supermodular if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) (1)

for all x, y ∈L. If the inequality holds strictly for all x‖y ∈L, we say that f is strictly
supermodular. Similarly, f is said to be (strictly) submodular if −f is (strictly) super-
modular.

An equivalent definition of supermodular functions can be given using the local nature
of (1). Given a lattice L, a function f : L → R is said to be supermodular at x, y if
f(x∨y)+f(x∧y) ≥ f(x)+f(y). Then f is supermodular if it is supermodular at x, y for
any x‖y∈L. Such observation applies to all the functions that we define below. However,
for simplicity, we will introduce them always through the global characterization. On
the other hand, when necessary, we will say that a function has a given property at x, y
if it satisfies that property locally at x‖y.

Rearranging (1), one can easily deduce that a supermodular function has the ordinal
implication that for all x, y∈L, f(x) ≥ f(x∨y) implies f(x∧y) ≥ f(y) and f(x) > f(x∨y)
implies f(x∧y) > f(y). Since it suggests that a nonincreasing order is maintaned across
the images of given pairs of values, we will call this the downgrading property. Its dual,
corresponding to the case of submodular functions, is called upgrading property.

4



In several applications of lattice programming, the full power of the assumption of
supermodularity is not necessary and it suffices to make use of some variants of the
downgrading property, which can be generated as follows. Let R,S denote either ≥ or
>. Then, the general form of the downgrading property states that for all x‖y ∈ L,
f(x)Rf(x ∨ y) implies f(x ∧ y)Sf(y). It is not difficult to see that there are only five
possible combinations which can be used to define some form of downgrading property.
This motivates the introduction of the following classes of functions.

Definition 2 Let L be a lattice. We say that the function f : L → R is: 1) downgrading
if f(x) ≥ f(x ∨ y) implies f(x ∧ y) ≥ f(y) and f(x) > f(x ∨ y) implies f(x ∧ y) > f(y)
for all x, y∈L; 2) strictly downgrading if f(x) ≥ f(x∨ y) implies f(x∧ y) > f(y) for all
x‖y∈L; 3) meet-downgrading if f(x) ≥ f(x∨ y) implies f(x∧ y) ≥ f(y) for all x, y∈L;
4) join-downgrading if f(x) > f(x ∨ y) implies f(x ∧ y) > f(y) for all x, y ∈ L; and
5) quasidowngrading if f(x) > f(x ∨ y) implies f(x ∧ y) ≥ f(y) for all x, y∈L.

It is not difficult to check that a strictly downgrading function is also downgrading; that
a function is downgrading if and only if it is both meet and join-downgrading; and that
meet and join-downgrading functions are quasidowngrading. An important alternative
characterization of the quasidowngrading functions is that their upper level sets are
quasisublattices.

2.2 Some consequences of the downgrading property

In order to appreciate the rôle of the downgrading property in lattice programming, we
briefly consider the generalizations of four of its key results under various forms of it.
Since our goal is simply to show the usefulness of the downgrading property, we will
not necessarily state them in their utmost generality. The first result is an existence
theorem proved by Veinott in 1976 [12] which shows that under a mild assumption a
quasidowngrading function attains its maximum.

Theorem 1 Let L be a lattice. If f : L → R is quasidowngrading and upper chain
complete, then f attains its maximum on L.

We remark that if L is complete and f is order upper semicontinuous, then f is upper
chain complete. This provides a useful sufficient condition to guarantee that Theorem 1
holds. The second result we present characterizes the set of maximizers of a downgrading
function and extends a theorem of Topkis [9].

Theorem 2 Let L be a lattice and f : L → R. Then the following is true for the set M
of its maximizers: 1) if f is strictly downgrading, M is a subchain; 2) if f is downgrading,
M is a sublattice; 3) if f is join-downgrading (respectively, meet-downgrading), M is a
join sublattice (meet sublattice); 4) if f is quasidowngrading, M is a quasisublattice.

Proof: Since all the proofs are analogous, we only prove the case of a downgrading
function. Assume x‖y are maximizers. Then, f(x) = f(y). If x ∨ y is not a maximizer,
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then f(x) > f(x ∨ y) and the downgrading property implies f(x ∧ y) > f(y), which
contradicts the assumption that y is a maximizer. Hence, x∨ y must be a maximizer. A
similar argument shows that x ∧ y is also a maximizer. ✷

Remark that the fourth statement follows immediately from the observation that a
function is quasidowngrading if and only if all its upper level sets are subquasilattices.
The next result concers preservation of the downgrading property under maximization
and generalizes a theorem given in [2]. To present it, we introduce some notation. Let
X,A be posets and Ax ⊆ A be nonempty for all x ∈ X. Order (partially) the set
L = {(x, a) : x ∈ X, a ∈ Ax} with the ordering induced from the direct product of X
and A. Given a function f : L → R, define the maximum function F : X → R by
F (x) = supa∈Ax

f(x, a).

Theorem 3 Let L be a lattice and F : X → R finite on X. If f : L → R has a variant
of the downgrading property, this same variant is inherited by F .

Proof: We only prove the case of a downgrading function. Since L is a lattice, it follows
that both X and Ax (for all x∈X) are also lattices. Choose arbitrary x1, x2 in X. If x1

and x2 are comparable, the argument is trivial; so, assume x1‖x2. By definition, for any
ε > 0, there exist ai∈Axi such that F (xi) < f(xi, ai) + ε, for i = 1, 2.

Since L is a lattice, both (x1, a1)∨(x2, a2) = (x1∨x2, a1∨a2) and (x1, a1)∧(x2, a2) =
(x1 ∧ x2, a1 ∧ a2) are in L. Therefore, we have

f(x1, a1) − f(x1 ∨ x2, a1 ∨ a2) ≥ F (x1) − F (x1 ∨ x2) − ε (2)
F (x1 ∧ x2) − F (x2) ≥ f(x1 ∧ x2, a1 ∧ a2) − f(x2, a2) − ε (3)

and

f(x2, a2) − f(x1 ∧ x2, a1 ∧ a2) ≥ F (x2) − F (x1 ∧ x2) − ε (4)
F (x1 ∨ x2) − F (x1) ≥ f(x1 ∨ x2, a1 ∨ a2) − f(x1, a1) − ε (5)

Assume F (x1) ≥ F (x1 ∨ x2). Let ε → 0, and using the downgrading property of f
conclude from (2) and (3) that F (x1 ∧ x2) ≥ F (x2). Similarly, one obtains from (4)
and (5) that if F (x1) > F (x1 ∨ x2), then F (x1 ∧ x2) > F (x2). ✷

Notice that by Theorem 1 it suffices to assume that f is upper chain complete on
L to guarantee that F is finite on X. The fourth result is a monotonicity theorem
which particularizes a result of Veinott [11] about increasing selections from ascending
multipofunctions. Given a poset X and a lattice A, denote by L(A) the set of all
sublattices of A. We say that a map Γ : X → L(A) is ascending on X if for all
x1 � x2 in X it holds that x1 ∨ x2 ∈ Γ(x1) and x1 ∧ x2 ∈ Γ(x2). Furthermore, if
y1 � y2 for all yi ∈ M(xi) (i = 1, 2), we say that Γ(x) is strictly ascending on X.
Under the same conventions preceding Theorem 3, further assume that Ax is a lattice
for all x∈X. For each x∈X, denote the (parameterized) set of maximizers for f(x) by
M(x) = {a∈Ax : f(x, a) = F (x)}. Define X ′ = {x∈X : M(x) is nonempty}.
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Theorem 4 Let L be a lattice. If Ax is ascending on X and f : L → R is (strictly)
downgrading, then the set of maximizers M(x) for f is (strictly) ascending on X ′.

Proof: Choose arbitrary x1 � x2 in X ′ and corresponding ai∈M(xi) (i = 1, 2). Since
Ax is ascending on X, a1 ∨ a2 ∈Ax1 and a1 ∧ a2 ∈ ax2 . Therefore, (x1, a1 ∨ a2)∈L and
(x1, a1 ∧a2)∈L. Since a1∈M(x1), f(x1, a1) ≥ f(x1, a1 ∨a2). Thus, by the downgrading
property, f(x2, a1 ∧ a2) ≥ f(x2, a2) = F (x2) and therefore a1 ∧ a2 ∈M(x2). Similarly,
since a2∈M(x2), f(x2, a2) ≥ f(x2, a1∧a2). Therefore f(x1, a1∧a2) ≥ f(x1, a1) = F (x1)
and a1 ∨ a2∈M(x1).

Assume further that f is strictly downgrading. Then a1 and a2 must be comparable,
otherwise f(x1, a1) ≥ f(x1, a1∨a2) would imply f(x2, a1∧a2) > f(x2, a2) = F (x2) which
is impossible. ✷

By Theorem 1, if we assume that f is upper chain complete we can strenghten the
conclusion to hold on X itself. Also, we remark that weaker forms of this theorem can
be given for weaker variants of the downgrading property.

3 Generalized supermodular functions

3.1 Super∗ functions

The importance of the downgrading property justifies the interest to define classes of
functions satisfying it which are larger than the class of supermodular functions. This
motivates the following definition.

Definition 3 Let L be a lattice. We say that the function f : L → Ran(f) is super∗ if
there exists a (nonconstant) weakly increasing binary operation ∗ on Co(f) such that

f(x ∨ y) ∗ f(x ∧ y) ≥ f(x) ∗ f(y) (6)

for all x, y ∈L. If the inequality holds strictly for all x‖y ∈L, we say that f is strictly
super∗.

The most frequent examples of super∗ functions in the literature are the supermodu-
lar (or superadditive) functions for ∗ = + and the supermultiplicative functions for ∗ = ·.
Notice however that the ∗ operation is not supposed to be necessarily commutative or
continuous.

Veinott [10] has introduced super∗ functions under the weaker requirement that ∗
is nondecreasing. The main advantage of such choice is that it allows one to include
in the class of (strictly) super∗ functions the (strictly) supermaximal and supermini-
mal functions, respectively defined by letting ∗ = ∨ and ∗ = ∧ in Definition 3 (see
Section 3.4 of this work). On the other hand, such an extensive definition makes the
class of super∗ functions too large to be interesting for the purpose of ensuring some
version of the downgrading property. In fact, as the following simple example shows,
if ∗ is only nondecreasing then a super∗ function may not even be quasidowngrading.
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Let D = {0, 1, 2} and C = {0, 1, 2, 3, 4, 5}. Define f : D × {0, 1} → C by f(0, 0) = 0;
f(1, 0) = 1; f(2, 0) = 4; f(0, 1) = 3; f(1, 1) = 2; f(1, 2) = 5. Define the nondecreasing
binary operation ∗ on Ran(f) by

s ∗ t =

{
s ∨ t if s + t ≥ 5
1 otherwise

Then f is super∗ (for ∗ nondecreasing), but it is not quasidowngrading: for x = (0, 1)
and y = (1, 0), we have f(x) > f(x ∨ y) but f(x ∧ y) �≥ f(y).

For this reason, we choose to allow a slightly more restricted class of functions in
Definition 3 at the expense of leaving out supermaximal and superminimal functions,
which will be discussed separately in Section 3.4. The most immediate advantage of
such choice is that it ensures indeed that some form of the downgrading property always
holds for super∗ functions. The strongest possible result is the following.

Theorem 5 Let L be a lattice. If f : L → R is a super∗ function, then f is quasidown-
grading. Moreover, if f is strictly super∗, then it is strictly downgrading.

Proof: We prove the counterpositive. Assume f is not quasidowngrading. Then, there
exist x, y such that f(x) > f(x∨ y) and f(y) > f(x∧ y). By weak increasingness of ∗, it
follows that f(x∨y)∗f(x∧y) ≤ f(x)∗f(y) with equality holding only if the null element
appears on both sides of the inequality. However, by uniqueness of the null element, this
cannot happen and therefore the inequality is strict. Hence, f is not super∗.

The proof for the strict case is analogous. Assume f is not strictly downgrading. Then
there exist x‖y such that f(x) ≥ f(x ∨ y) and f(y) ≥ f(x ∧ y). By weak increasingness
of ∗, we have f(x∨ y) ∗ f(x∧ y) ≤ f(x) ∗ f(y) and f is not a strictly super∗ function. ✷

We now show that this is indeed the strongest possible result. Consider the following
example. Let f : {0, 1}2 → {0, 1, 2} be defined by f(0, 0) = 1; f(1, 0) = 2; f(0, 1) = 0;
f(1, 1) = 0. Then f is supermultiplicative but not meet-downgrading. The same example
with f(0, 0) = 0 and f(1, 1) = 1 works to show that a supermultiplicative function is not
join-downgrading. The problem here is that 0 is a null element for · and therefore the
supermultiplicativity property fails to separate elements whose image is 0.

3.2 Symmetric super∗ functions

Despite the reassuring nature of Theorem 5, in its full generality the problem of charac-
terizing classes of functions which preserve the downgrading property is very complex.
As an example, it suffices to notice that any real-valued function f on a lattice L such
that there exist two real-valued increasing functions g1, g2 on Ran(f) such that

g1 ◦ f(x ∨ y) + g2 ◦ f(x ∧ y) ≥ g1 ◦ f(x) + g2 ◦ f(y) (7)

is downgrading. The proof of this fact is similar to the proof of Theorem 9 and it is
omitted.
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The necessity to simplify the characterization problem and the desire to ensure
stronger forms of the downgrading property for super∗ functions motivate the impo-
sition of additional restrictions on super∗ functions. Throughout the rest of this paper,
we will therefore consider mainly the following class of functions.

Definition 4 Let L be a lattice. We say that a (strictly) super∗ function f : L → Ran(f)
is symmetric if the (nonconstant) weakly increasing binary operation ∗ is commutative
and continuous on Co(f).

As the name suggests, the definition of symmetric super∗ function mainly relies on
the commutativity property. The continuity assumption, in fact, is technical and could
be relaxed to a certain extent which however we do not believe advantageous to pursue
in this work.

We now proceed to consider two main subclasses of symmetric super∗ functions which
are downgrading and for which some characterization results can be given. For the sake
of the brevity, we will omit in the sequel to specify that we are only considering symmetric
super∗ functions, unless this is necessary to avoid ambiguities.

Definition 5 Let L be a lattice. We say that a (strictly) symmetric super∗ function
f : L → R is (strictly) superassociative if ∗ is associative on Co(f).

We notice that although the choice of the name superassociative is meant to stress
that the associativity assumption is the most crucial to our development, all the other
properties buried in the definition of a symmetric super∗ function are also important.
The same remark applies to the following definition.

Definition 6 Let L be a lattice. We say that a (strictly) symmetric super∗ function
f : L → R is (strictly) supermedial if ∗ is medial on Co(f).

We consider now a few well-known results from the theory of functional equations.
Their proofs can be found for instance in [1] and in [3].

Theorem 6 Let J =< a, b > be a (possibly unbounded) proper interval in R and
∗ : J2 → J a cancellative nondecreasing binary operation. Then ∗ is continuous and
associative if and only if there exists a continuous and increasing function g : J → R
such that s ∗ t = g−1[g(s) + g(t)]. Moreover, this can happen only if J is open at least
on one side and ∗ is increasing.

The last statement follows from the following observations. It can be shown that
under the assumptions of Theorem 6 there exists an element s such that it is either
s > s ∗ s or s ∗ s > s (of course, there may be two distinct elements such that both
conditions hold). If there is a s such that s ∗ s > s the interval must be open at least on
the right. If there is a t such that t > t ∗ t the interval must be open at least on the left.
Moreover, it can also be shown that the assumptions of cancellativity, nondecreasingness
and continuity together imply that ∗ must be increasing. Finally, notice that in this case
the property of commutativity is not assumed a priori, but it is a consequence of the
representation.
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Theorem 7 Let J = [a, b] be a compact interval in R and ∗ : J2 → J a triangular
binary operation. Then ∗ is continuous and weakly increasing if and only if there exists
a continuous and increasing function g : [a, b] → R such that s ∗ t = g−1[g(s) + g(t)]
and one of the following holds: 1) g(a) = 0 and g(b) = +∞ (so that g has range R+);
2) g(a) = −∞ and g(b) = 0 (so that g has range R−).

Notice that Theorems 6 and 7 apply respectively when the domain of ∗ is not closed
or it is compact. For medial operations, the following characterization theorem holds.

Theorem 8 Let J be a (possibly unbounded) interval in R and ∗ : J2 → J a cancellative
weakly increasing binary operation. Then ∗ is idempotent, continuous and medial if and
only if there exists a continuous and increasing function g : J → R such that

s ∗ t = g−1
[
g(s) + g(t)

2

]

3.3 Supermodularizable functions

We now define a class of symmetric super∗ functions which satisfies the downgrading
property and are amenable to a more complete study of their properties. Their definition
can be thought as the symmetric version of Equation (7).

Definition 7 Let L be a lattice. We say that the function f : L → R is supermodular-
izable if there exists an increasing continuos function g : Co(f) → R such that

g ◦ f(x ∨ y) + g ◦ f(x ∧ y) ≥ g ◦ f(x) + g ◦ f(y) (8)

for all x, y ∈L. If the inequality holds strictly for all x‖y ∈L, we say that f is strictly
supermodularizable.

Remark that this definition is quite reminiscent of that one of concavifiable functions
(see [13]). Contrary to the case of these, however, the assumption that g be a continuous
function is not necessary. Indeed, most of our results can be derived without making use
of it. However, its introduction greatly simplifies the exposition without substantial loss
for any insight the following may offer.

Notice that we can always define a binary operation ∗ on Co(f) by letting s ∗ t =
K[g(s) + g(t)], where K ∈R is a normalizing constant which is necessary to guarantee
that ∗ maps into Co(f). Such ∗ is obviously commutative and therefore any (strictly)
supermodularizable function is (strictly) symmetric super∗. Hence, Theorem 5 guaran-
tees that it is quasidowngrading. However, we can strengthen such result and prove that
a supermodularizable function is also downgrading.

Theorem 9 Let L be a lattice and f : L → R a (strictly) supermodularizable function.
Then f is (strictly) downgrading.
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Proof: It follows from Equation (8) that

g ◦ f(x ∧ y) − g ◦ f(y) ≥ g ◦ f(x) − g ◦ f(x ∨ y) (9)

Now, if f(x) ≥ f(x∨y), then g◦f(x) ≥ g◦f(x∨y). Therefore, by (9), g◦f(x∧y) ≥ g◦f(y).
So, f(x∧y) ≥ f(y). The proof that f(x) > f(x∨y) implies f(x∧y) > f(y) is analogous.
The case of strict supermodularizability is a corollary of Theorem 5. ✷

This is the strongest possible result, as the following example due to Shannon [8]
shows. Let D = {0, 1, 2, 3} and C = {1, 2, 3, 4, 5}. Define f : D × {0, 1} → C
by f(0, 0) = 1; f(1, 0) = 2; f(2, 0) = 2; f(3, 0) = 1; f(0, 1) = 3; f(1, 1) = 4; f(1, 2) = 5;
f(1, 3) = 3. Then f is strictly downgrading but it is not supermodularizable because
otherwise there would be an increasing function g : Co(f) → R such that g(4) + g(1) ≥
g(3) + g(2) ≥ g(5) + g(1). This implies g(4) ≥ g(5), which contradicts the assumption
that g is increasing.

The most important consequence of Theorems 6, 7 and 8 is that they provide very
weak sufficient conditions under which (strictly) superassociative and supermedial func-
tions are (strictly) supermodularizable.

Theorem 10 Let L be a lattice and f : L → R a (strictly) superassociative function.
If Co(f) is not closed and ∗ is cancellative or if Co(f) is compact and ∗ is a weakly
increasing increasing triangular function, then f is (strictly) supermodularizable.

Proof: From Theorems 6 and 7, it follows that there exists a continuous increasing
function g : Co(f) → R such that s ∗ t = g−1[g(s) + g(t)]. By definition of super∗
function, we have then

g−1[g ◦ f(x ∨ y) + g ◦ f(x ∧ y)] ≥ g−1[g ◦ f(x) + g ◦ f(y)].

Since the order relation ≥ is preserved under increasing transformation, this reduces
to g ◦ f(x ∨ y) + g ◦ f(x ∧ y) ≥ g ◦ f(x) + g ◦ f(y). The proof for the case of strict
superassociativity is analogous. ✷

Theorem 11 Let L be a lattice and f : L → R a (strictly) supermedial function. If ∗
is cancellative and idempotent, then f is (strictly) supermodularizable.

Proof: From Theorem 8, it follows that there exists a continuous increasing function
g : Co(f) → R such that

s ∗ t = g−1
[
g(s) + g(t)

2

]
.

By definition of super∗ function, we have then

g−1
[
g ◦ f(x ∨ y) + g ◦ f(x ∧ y)

2

]
≥ g−1

[
g ◦ f(x) + g ◦ f(y)

2

]
.
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Since the order relation ≥ is preserved under increasing transformation, this reduces to

g ◦ f(x ∨ y) + g ◦ f(x ∧ y)
2

≥ g ◦ f(x) + g ◦ f(y)
2

and therefore to g ◦ f(x ∨ y) + g ◦ f(x ∧ y) ≥ g ◦ f(x) + g ◦ f(y). The proof for the case
of strict supermedial is analogous. ✷

This theorem has a quite surprising converse which enlightens the nature of super-
modularizable functions.

Theorem 12 Let L be a lattice and f : L → R a (strictly) supermodularizable function.
Then f is (strictly) supermedial.

Proof: Let m,M ∈R be such that Co(f) =<m,M >. By continuity and increasing-
ness of g, Ran[g(Co(f))] =<g(m), g(M) > and the same brackets of <m,M > apply.
Therefore, since g : Co(f) →< g(m), g(M) >, it follows that g−1 :< g(m), g(M) >→
Co(f) exists; moreover, it is continuous and increasing. In particular, if s, t are in
<g(m), g(M)>, then (s + t)/2 is also in <g(m), g(M)>. Choose arbitrary x, y∈L; by
supermodularizability, it follows that g ◦ f(x ∨ y) + g ◦ f(x ∧ y) ≥ g ◦ f(x) + g ◦ f(y).
Dividing by 2 and applying the map g−1 to the resulting inequality, we have

g−1
[
g ◦ f(x ∨ y) + g ◦ f(x ∧ y)

2

]
≥ g−1

[
g ◦ f(x) + g ◦ f(y)

2

]
(10)

Now, define ∗ on Co(f) by s ∗ t = g−1 [(g(s) + g(t))/2]. Then ∗ is medial, continuous
and weakly increasing; hence, Equation (10) establishes supermediality. The proof for
the case of strict supermodularizability is analogous. ✷

A similar but weaker result can be given for superassociative functions.

Theorem 13 Let L be a lattice and f : L → R a function (strictly) supermodularizable
by a continuous increasing function g : Co(f) → R such that Ran[g(Co(f))] is closed
under addition. Then f is (strictly) superassociative.

Proof: The proof proceeds exactly as the one for Theorem 12.The only difference is
that the additional assumption is needed to establish that if s, t∈<g(m), g(M)>, then
s + t ∈< g(m), g(M) > as well. Given this, choose arbitrary x, y ∈ L. It follows by
supermodularizability that g ◦ f(x ∨ y) + g ◦ f(x ∧ y) ≥ g ◦ f(x) + g ◦ f(y). Defining
∗ on Co(f) by s ∗ t = g−1 [g(s) + g(t)] and applying the map g−1 to this inequality,
superassociativity follows. The proof for the case of strict supermodularizability, as
usual, is analogous. ✷

3.4 Superextremal functions

In this section, we consider two classes of functions which, as discussed in Section 3.1,
are not included in our definition of the class of super∗ functions.
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Definition 8 Let L be a lattice. We say that the function f : L → Ran(f) is supermax-
imal if

f(x ∨ y) ∨ f(x ∧ y) ≥ f(x) ∨ f(y) (11)

for all x, y∈L and that it is superminimal if

f(x ∨ y) ∧ f(x ∧ y) ≥ f(x) ∧ f(y) (12)

for all x, y∈L. If the inequalities hold strictly for all x‖y∈L, we say respectively that f
is strictly supermaximal or strictly superminimal.

If a function is either supermaximal or superminimal, we will call it a superextremal
function. A strictly superextremal function is analogously defined. An alternative im-
portant characterization of superminimal functions is that all their upper level sets are
sublattices.

It is easy to see that superextremal functions fail to belong to the class of symmetric
super∗ functions only because their sections are nondecreasing without being weakly
increasing. In fact, this is also the only reason for which they are not included in the
smaller classes of superassociative and supermedial functions, although they can certainly
be thought of as limiting cases of these. Thus, it is not surprising that superextremal
functions bear strong relationships with the downgrading property.

Our first result is the analogue of Theorem 5 for superextremal functions.

Theorem 14 Let L be a lattice. If f : L → R is a superextremal function, then f is
quasidowngrading. Moreover, if f is strictly superextremal, then it is strictly downgrad-
ing.

Proof: We prove the counterpositive. Assume f is not quasidowngrading. Then, there
exist x, y such that f(x) > f(x ∨ y) and f(y) > f(x ∧ y). For ∗ = ∨ or ∗ = ∧, it follows
that f(x∨y)∗f(x∧y) < f(x)∗f(y) and f is not superextremal. The proof for the strict
case is analogous. ✷

As for Theorem 5, this is again the strongest possible result. In fact, the example
following Theorem 5 suffices to show that a superminimal function is neither meet nor
join-downgrading. And if we change its y-values from 0’s to 3’s, the same example
applies to the case of a supermaximal function. Thus, we conclude that a superextremal
function may not necessarily be downgrading.

Theorem 14 has a partial converse, which shows that the superextremal property is a
local necessary condition for a function to be quasidowngrading. Notice that this implies
in particular that a super∗ or a fortiori a supermodularizable function is always locally
superextremal.

Theorem 15 Let L be a lattice. If f : L → R is quasidowngrading, then it is su-
perextremal at x, y for any x, y ∈ L. If f is strictly downgrading, then it is strictly
superextremal at x, y for any x, y∈L.
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Proof: Suppose that f is quasidowngrading and it is not supermaximal at x, y. We
show that it has to be superminimal at x, y. If f is not supermaximal at x, y, we
have f(x) ∨ f(y) > f(x ∨ y) ∨ f(x ∧ y). Then f(x) �= f(y), otherwise f would not
be quasidowngrading. So, assume without loss of generality that f(x) > f(y). By the
quasidowngrading property, f(x ∧ y) ≥ f(y). To conclude that f is superminimal at
x, y, we only need to show that f(x ∨ y) ≥ f(y). Suppose this is not so; then the
quasidowngrading property would imply f(x ∧ y) ≥ f(x), which is impossible. Hence,
we conclude that f is superminimal.

The proof for the case of a strictly downgrading function is analogous. ✷

As the following example shows, this is the strongest possible result. Let f : {0, 1}2 →
{0, 1} be defined by f(0, 0) = 1; f(1, 0) = 0; f(0, 1) = 1; f(1, 1) = 0. Then f is down-
grading but it is not strictly superextremal.

3.5 Differentiable supermodularizable functions

Although they certainly do not exhaust the class of downgrading functions, supermod-
ularizable functions constitute a prominent subclass of these. It is therefore interesting
to investigate if there exists a simple sufficient criterion to recognize them.

Throughout this section, we will make the assumption that the lattice L is the direct
product of a finite number n of chains and that the function f : L → R is twice
differentiable everywhere on L. Moreover, given a matrix A = [aij ], we say that A is a
Metzler matrix if aij ≥ 0, for all i �= j. If all the inequalities hold strictly, we say that A
is strictly Metzler.

The first part of the following result is proved in Topkis [9]. The second part of it
can be easily obtained following his proof.

Theorem 16 Let L be an interval in Rn and let the function f : L → R be twice
differentiable on an open superset of L. Then f is supermodular if and only if its Hessian
matrix ∇2f(x) is Metzler for any x∈L. If ∇2f(x) is strictly Metzler for any x∈L, then
f is strictly supermodular.

From this theorem, we immediately obtain the following sufficient condition for the
supermodularizability of a function f on L.

Theorem 17 Let L be an interval in Rn and let the function f : L → R be twice
differentiable on an open superset of L. If there exists a twice differentiable and increasing
function g : Co(f) → R such that the matrix

G(x) = g′[f(x)]∇2f(x) + g′′[f(x)]∇f(x)∇f(x)	

is (strictly) Metzler for all x∈L, then f is (strictly) supermodularizable.

We now introduce a subclass of supermodularizable functions to which this result
can be fruitfully applied to obtain a simple characterization.
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Definition 9 Let L be a lattice. For k ∈ R, we say that the function f : L → R is
k-supermodular if it is supermodular (k = 0) or if there exists some k �= 0 such that

sgn(k) {exp[kf(x ∨ y)] + exp[kf(x ∧ y)]} ≥ sgn(k) {exp[kf(x)] + exp[kf(y)]} (13)

for all x, y ∈L. If the inequality holds strictly for all x‖y ∈L, we say that f is strictly
k-supermodular.

It is easy to see that a (strictly) k-supermodular function is supermodularizable if and
only if it is supermodularizable by g(s) = sgn(k) exp(ks). By Theorem 12, a (strictly)
k-supermodular functions is (strictly) supermedial for

s ∗k t = log
[
exp(ks) + exp(kt)

2

]1/k

which is also known as the exponential mean of order k. Since limk↓−∞ s ∗k t = s ∧ t,
limk→0 s ∗k t = (s + t)/2 and limk↑∞ s ∗k t = s ∨ t, as k increases the k-supermodular
functions range from superminimal (k = −∞) to supermaximal (k = ∞) passing through
the supermodular functions (k = 0).

The main result of this section is the following characterization for k-supermodular
functions. Its proof is an immediate consequence of Theorem 16 and 17 and of the obser-
vation that a k-supermodular function is supermodularizable by g(s) = sgn(k) exp(ks).

Theorem 18 Let L be an interval in Rn and let the function f : L → R be twice
differentiable on an open superset of L. Then f is k-supermodular if and only if there
exists k∈R such that the matrix

K(x) = ∇2f(x) + k∇f(x)∇f(x)	 (14)

is Metzler for any x ∈ L. If K(x) is strictly Metzler for any x ∈ L, then f is strictly
k-supermodular.

Some immediate results can be drawn from Theorem 18. Let H denote the matrix
given by Hij = 1 if i �= j and 0 otherwise.

Theorem 19 Let L be an interval in Rn and let the function f : L → R be twice
differentiable on an open superset of L. Suppose there exist m∈R and ε > 0 such that
for all x∈L

(Hessian Metzler bounded from below) ∇2f(x) + mH is Metzler
(∇f∇f	 Metzler positively bounded away from zero) ∇f(x)∇f(x)	 − εH is Metzler

Then f is k-supermodular for k = max{0,m/ε} and strictly k-supermodular for k >
max{0,m/ε}.
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Proof: By Theorem 18, it suffices to show that K(x) is (strictly) Metzler for any x∈L.
The boundedness assumptions guarantee that ∇2f(x) + k∇f(x)∇f(x)	 + (m− kε)H is
(strictly) Metzler for the given choices of k, which establishes the result. ✷

Notice that if m ≤ 0 then f is supermodular. If ∇f(x)∇f(x)	 is Metzler negatively
bounded away from zero by ε < 0, Theorem 19 holds for k ≤ min{0,m/ε}.

Corollary 20 Let L be an interval in Rn and let the function f : L → R be twice
differentiable on an open superset of L. If L is compact in the standard topology on Rn

and
∂f

∂xi
> 0 for all i = 1, . . . , n (15)

then f is supermodularizable.

Proof: By compactness, the Hessian matrix is bounded below and the gradient is
bounded away from 0 in the Metzler sense. Therefore, there exists some k such that f
is (strictly) k-supermodular and thus (strictly) supermodularizable. ✷

Notice that we could replace (15) by the assumption that the partial derivatives are
all negative.

Theorem 19 provides a sufficient condition to recognize a (strictly) supermodulariz-
able function, and therefore guarantees that such function has the (strict) downgrading
property. We now provide an example in which it applies to establish that even a strictly
submodular function may satisfy the downgrading property. Let D = (−∞,−1]×[1/2, 1].
Define f : D → R− to be f(x1, x2) = x1/x2. Then f12(x) = −x−2

2 < 0 for all x∈D and
therefore f is strictly submodular. However, since f1(x) = x−1

2 ≥ 1, f2(x) = −x1x
−2
2 ≥ 1,

and f12(x) = −x−2
2 ≥ −4, we have that m = 4 and ε = 1 apply in Theorem 19 to obtain

that f is (strictly) k-supermodular for k = 4 (k > 4).
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