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1 Pareto-dominated configurations

We show one way to formulate Proposition 4 in measure-theoretic terms. Intuitively,
this requires that the endowment of goods is well-distributed, in the sense that the
measure ω is non-atomic. Let Π(=k) be the set of the classifications using exactly k.
Given π in Π(=k), rearrange it in the string of intervals (F1, . . . , Fk) where i < j if
and only if s < t for every s in Fi and t in Fj. If we associate π with the vector
ω(π) = (ω(F1), . . . , ω(Fk)) in Rk, then the map π 7→ ω(π) is continuous and injective.
Define the measure λ(O) for a set O ⊂ Π(=k) as the Lebesgue measure of the set
{ω(π) : π ∈ O}.

Corollary 8. Suppose that agents are not all identical and k > 1. Then there is
a non-null subset O of classifications in Π(=k) whose competitive configurations are
Pareto-dominated by some competitive configuration ⟨π̂, (x̂i)⟩ with π̂ in Π(=k).

The following example illustrates a society with two agents, where every configu-
ration can be improved both from a Paretian and an utilitarian point of view with a
suitable refinement of the underlying classification.

Example 7. Consider an economy where ω is the Lebesgue measure and there are
two agents with identical claims. Let S ⊂ I denote the Smith-Volterra-Cantor set
(SVC set for short), which is a measurable set of size 1

2 with the property that every
non-null interval in I contains a non-null interval disjoint from S; see the ϵ-Cantor
set in Aliprantis and Burkinshaw (1981, p. 141). Agents’ of each group have linear
preferences based on the evaluation measures:

ν1(F ) = 2ω(F ∩ S), ν2(F ) = 2ω(F \ S).

We claim that the only Pareto-optimal configurations assign the 0 bundle to all agents
of group 1.

Let ⟨π, (xi)⟩ be a configuration and let the interval B ∈ π be a commodity such that
x1

B > 0. By the properties of the SVC set S, there exists an interval C ⊆ B such that
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C ∩ S = ∅, and so ν1(C) = 0 and ν2(C) = 2ω(C). If we label C as a new commodity,
we obtain a finer classification ρ under which one can transfer all goods of type C

previously assigned to 1 to agent 2, while leaving the rest of the allocation unchanged.
But this benefits agent 2 without causing harm to 1 (because her evaluation of C is
null), proving that ⟨π, (xi)⟩ is Pareto-dominated.

Formally, let B1 and B2 be the two (possibly, empty) intervals obtained by remov-
ing C from B. Let ρ be a refinement of the classification π, where the commodity B

has been replaced with B1, B2 and C. Consider a new allocation (yi) in E(ρ) where
the bundle assigned to agent 1 is

y1
A = ω(A)

ω(B)x1
B if A ∈ {B1, B2}, y1

C = 0, y1
A = x1

A otherwise;

and the bundle assigned to agent 2 is:

y2
A = ω(A)

ω(B)x2
B if A ∈ {B1, B2}, y2

C = ω(C)
ω(B)x2

B + ω(C)
ω(B)x1

B, y2
A = x2

A otherwise.

Computations shows that (yi) is a feasible allocation in E(ρ) that agent 1 finds equiv-
alent to (xi), while agent 2 strictly prefers it to (xi). Standard arguments based on
the continuity and monotonicity of the function Vi(ρ, ·) prove that one can modify
(yi) into a new allocation that every agent strictly prefers to (xi).

Clearly, Example 7 relies crucially on the assumption that agents’ evaluations of
goods are expressed through extremely elaborated subsets of I (such as the SVC
set) while commodities can only be defined as intervals. If we allow commodities
to be arbitrary subsets of I, then the classification π = {S, Sc} would generate a
Pareto-optimal configuration where all goods of type S are assigned to agent 1 and
the rest to agent 2. This suggests that the stronger the exogenous constraints on
the classification of goods into commodities, the further agents may be from reaching
optimal allocations.

2 Comparative statics with opposed preferences

Given the classification π = (C1, . . . , Ck) where intervals are naturally ordered, let
p = (p(Ci))i denote the system of competitive equilibrium prices, with x = (x(Ci))i

and y = (y(Ci))i being the equilibrium bundles respectively assigned to 1 and 2. We
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outline the main steps, including the explicit computation of ∂V ∗
1 (π)

∂θ1
.

1. The ratio ν1(Ci)/ω(Ci) decreases as i increases. Indeed, let F (x) =
∫ x

0 f(t) dt,
so that F ′(x) = f(x). Assume a < b < c; given A = (a, b) and B = [b, c), by the
Mean Value theorem ν1(A)/ω(A) = (F (b) − F (a))/(b − a) = f(θA) for some θA in A,
and similarly ν1(B)/ω(B) = (F (c) − F (b))/(c − b) = f(θB) for some θB in B. When
f is decreasing, f(θA) > f(θB) and thus ν1(A)/ω(A) > ν1(B)/ω(B). Specularly,
ν2(Ci)/ω(Ci) increases as i increases.

2. Suppose that x is an equilibrium allocation. If

p(Cj)
p(Ci)

>
ν1(Cj)/ω(Cj)
ν1(Ci)/ω(Ci)

,

then x(Cj) = 0. Correspondingly, x(Ci) > 0 and x(Cj) > 0 requires that the above
expression holds as an equality. Similar considerations hold for y and ν2.

3. There is a j∗ such that x(Ci) = ω(Ci) for i < j∗ and y(Cj) = ω(Cj) for j > j∗.

Proof. Suppose i < j and x(Cj) > 0. Then (2) gives

p(Cj)
p(Ci)

≤ ν1(Cj)/ω(Cj)
ν1(Ci)/ω(Ci)

< 1,

where the last inequality follows from (1). Using (1) again gives

p(Cj)
p(Ci)

< 1 <
ν2(Cj)/ω(Cj)
ν2(Ci)/ω(Ci)

and thus y(Ci) = 0, or (2) would be violated. Therefore, because the market clears
in equilibrium, x(Ci) = ω(Ci). □

4. Let C∗ = Cj∗ be the disputed commodity; define Cℓ = ⋃
i<j∗ Ci and Cr =⋃

j>j∗ Cj. If x(C∗) > 0 and y(C∗) > 0, then x(C∗) = ξω(C∗), where

ξ = 1
2

[
ν2(Cr)
ν2(C∗) − ν1(Cℓ)

ν1(C∗) + 1
]

. (*)
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Proof. By (1), we have x(Ci) = ω(Ci) for i < j∗ and x(Cj) = 0 for j > j∗. Applying
(2) gives

p(C∗)
p(Ci)

= ν1(C∗)/ω(C∗)
ν1(Ci)/ω(Ci)

for every i < j∗,

from which we obtain

ω(Ci)p(Ci) =
[

ω(C∗)p(C∗)
ν1(C∗)

]
ν1(Ci) for every i < j∗.

Given the system of prices p, the worth of the bundle x for Agent 1 is:

∑
i<j∗

ω(Ci)p(Ci) + ξω(C∗)p(C∗) =
[

ω(C∗)p(C∗)
ν1(C∗)

]
·
[
ν1(Cℓ) + ξν1(C∗)

]
.

Similarly, the worth of the bundle y for Agent 2 is:

∑
j>j∗

ω(Cj)p(Cj) + (1 − ξ)ω(C∗)p(C∗) =
[

ω(C∗)p(C∗)
ν2(C∗)

]
·
[
ν2(Cr) + (1 − ξ)ν2(C∗)

]
,

Because in equilibrium x and y must have the same worth at p, we have:

ν1(Cℓ) + ξν1(C∗)
ν1(C∗) = ν2(Cr) + (1 − ξ)ν2(C∗)

ν2(C∗)

from which (*) follows. □

5. By a standard continuity argument:

xj∗ =


0 if ξ ≤ 0,

ξω(Cj∗) if 0 < ξ < 1,

ω(Cj∗) if ξ ≥ 1,

with yj∗ = ω(Cj∗) − xj∗ .
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6. Suppose C∗ = (θ1, θ2) and denote by V1 the utility that agent 1 obtains from the
bundle x. Using (5), we have

V ∗
1 =


ν1(Cℓ) if ξ ≤ 0,

ν1(Cℓ) + ξν1(C∗) if 0 < ξ < 1,

ν1(Cℓ ∪ C∗) if ξ ≥ 1.

In particular, when 0 < ξ < 1, substituting (*) from (4) gives:

V ∗
1 = ν1(Cℓ) + ν1(C∗)

2 + ν1(C∗)ν2(Cr)
2ν2(C∗) = ν1(Cℓ ∪ C∗)

2 + ν1(C∗)ν2(Cr)
2ν2(C∗) .

Recall that Cℓ = [0, θ1], C∗ = (θ1, θ2) and Cr = [θ2, 1]. Therefore:

∂ν1(Cℓ ∪ C∗)
∂θ1

= 0,
∂ν1(C∗)

∂θ1
= −f1(θ1),

∂ν2(C∗)
∂θ1

= −f2(θ1).

Then the derivative of V ∗
1 with respect to θ1 when 0 < ξ < 1 is:

∂V ∗
1

∂θ1
= ν2(Cr)

2ν2
2(Cj∗)

[
ν1(Cj∗)f2(θ1) − f1(θ1)ν2(Cj∗)

]
.

3 Refinements may not be welfare-improving

The next example exhibits an economy and a classification π with the following
property: for every (finer) classification ρ that splits a commodity from π into two
commodities, there is an agent who strictly prefers every competitive allocation in
E(π) to any competitive allocation in E(ρ). In short, adding a new commodity dam-
ages at least one agent and therefore is not a Pareto-improvement for the society.

Example 8. Consider an economy where ω coincides with the Lebesgue measure.
There are 4 agents with identical claims and linear preferences based on the evaluation
measures:

ν1(F ) = 2ω
(

F \
[1
4 ,

3
4

])
, ν2(F ) = 2ω

(
F ∩

[1
4 ,

3
4

])
,

ν3(F ) = 2ω
([

0,
1
2

])
, ν4(F ) = 2ω

([1
2 , 1

])
.

Let π be the classification formed by the two intervals A =
[
0, 1

2

]
and B =

(
1
2 , 1

]
.
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In the exchange economy E(π) agent 3 cares only about commodity A, agent 4 only
about B, and agents 1 and 2 are indifferent between them. An equilibrium is achieved
when the two commodities have the same price and agents demand, for example, the
π-bundles:

x1 = x3 =
(1

4 , 0
)

, x2 = x4 =
(

0,
1
4

)
.

We claim that for every refinement ρ of π formed by 3 tradable commodities there
is an agent that strictly prefers (xi) to any competitive allocation in E(ρ). Precisely,
we assume that ρ is obtained by splitting A into two commodities A1 and A2 and we
prove that, in equilibrium, agent 3 cannot afford 1

4 units of goods of type A1 or A2,
implying that 3 receives a strictly lower utility under ρ. The same strategy shows that
if ρ is obtained by splitting B then agent 4 strictly prefers π to ρ.

Assume t ∈
(
0, 1

2

)
such that ω(A1) = t and ω(A2) = 1

2 − t. Let p be a competitive
price in E(ρ) normalized so that p(B) = 1 and let w be agent 3’s wealth at p. We
assume that p(A1) ≤ p(A2) (the other case is treated identically) so that agent 3
demands exactly:

w

p(A1)
= 1

4

[
t + p(A2)

p(A1)

(1
2 − t

)
+ 1

2p(A1)

]

units of commodity A1.
Let us assume by contradiction that w/p(A1) is greater than 1

4 . There are two
possible cases:

• if p(A1) = p(A2) ≤ 1, then each of the agents 1, 2 and 3 demands 1
4 units of

commodity A1 or A2. This creates an excess of demand and thus p cannot be
an equilibrium price. On the other hand, if p(A1) = p(A2) > 1 then w/p(A1) is
strictly less than 1

4 .

• If p(A1) < p(A2) then agents 1 and 3 demand A1 instead of A2. Therefore,
p(A2) ≤ 2, or no agents would demand A2. At the same time, it must be that
p(A1) ≥ 1

2t
or agent 1 would demand only A1, leaving 3 with strictly less than

1
4 units of A1. Combining these two inequalities we obtain:

w

p(A1)
= 1

4

[
t + p(A2)

p(A1)

(1
2 − t

)
+ 1

2p(A1)

]
≤ 1

4 [t + 2t(1 − 2t) + t] = t − t2

which is strictly smaller than 1
4 for every t < 1

2 .
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The above example is based on refinements of π formed only by 3 intervals. If
we allow for richer classifications, then we can find refinements of π that are strictly
preferred to π by every agent in the society. As a way of illustration, let ρ be formed
by the intervals:

A =
[
0,

1
4 − ε

)
, B =

[1
4 − ε,

1
2

]
, C =

(1
2 ,

3
4 − ε

]
, D =

(3
4 − ε, 1

]

with ε ∈
(
0, 1

4

)
. For ε sufficiently small, an equilibrium in E(ρ) is achieved when all

commodities have identical prices and each agent consumes the whole of a commodity
(1 gets A, 2 gets C, 3 gets B, and 4 gets D). This leaves every agent with a utility
strictly larger than the one they received with the allocation (xi).

The following example refines both Example 4 in the main text and Example 8
above by describing an economy where every refinement of the starting classification
gives a strictly lower social welfare. The setup is similar to Example 4, but the set
of feasible classifications is curtailed by assuming that the commodity B is an atom,
so that some tradable commodities cannot be split into smaller parts.

Example 9. Let λ be the Lebesgue measure on I and δ{1} denote the Dirac measure
for the singleton {1}. We consider a society where there are 2n agents with identical
claims and the measure ω is given by:

ω(F ) = 1
2
(
λ(F ) + δ{1}(F )

)
.

There are only two types of agents, forming groups of equal size. Agents have linear
preferences based on the evaluation measures:

ν1(F ) = λ(F ) and ν2(F ) = 1
4λ

(
F ∩

[
0,

1
2

])
+ 3

4λ
(

F ∩
[1
2 , 1

])
+ 1

2δ{1}(F ).

Intuitively, agents of type 1 value all types of goods identically, while those of type 2
care more about goods in

[
1
2 , 1

)
and especially about those labelled with 1.

Let π be the classification formed by the commodities A = [0, 1) and B = {1}.
At the competitive equilibrium, A and B have the same prices, with every agent from
group 1 consuming 1

2n
units of commodity A and every agent from group 2 consuming

1
2n

units of B.
We prove that, if ρ ≻ π, then every competitive allocation in E(ρ) assigns a
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positive amount of goods of type A to agents in group 2. Because the utility received
from goods of type A is higher for agents in group 1, this implies that the sum of
agents’ utilities in E(ρ) must be strictly lower than in E(π).

Suppose by contradiction that there exists a refinement ρ of π and a competitive
allocation in E(ρ) such that agents in group 1 consume all goods of type A and those
in group 2 all goods of type B. Because B is an atom, ρ can refine π only by splitting
A into smaller intervals and leaving B intact. We write ρ = {A1, . . . , Am, B} where
i < j implies s < t for all s ∈ Ai and t ∈ Aj. Because agents from group 1 demand
all commodities A1, . . . , Am, these must have all equal prices (otherwise agents of
group 1 would demand only the cheapest ones). At the same time, Am must cost
strictly more than B, otherwise agents in group 2 would rather demand Am than B.
Hence, the average price of the commodities Aj’s is strictly greater than the price of
B, implying that each agent in group 2 can demand more than 1

2n
units of B. This

leads to an excess of demand for B, which contradicts the assumption that prices are
competitive.

4 Equilibrium without prices

The next two examples illustrate that neither sufficient condition in Theorem 7 can
be dropped. A third following example shows that they are not necessary.

Example 10 (A society where ω is non-atomic but no agent has SPC). There are n

agents and ω is the Lebesgue measure. Every agent i has linear preferences with an
evaluation measure defined by:

ηi(F ) =
∫

F
ui dω.

for some strictly increasing density ui, so that no agent exhibits SPC. We claim that
no classification based on k ≥ 2 intervals can support an equilibrium.

Take any classification π = (B1, . . . , Bk) and let 0 = θ0 < θ1 < · · · < θk = 1 be
such that θj−1 and θj are the extreme points of the interval Bj. An agent i maximizes
the utility Vi(π, x) by demanding positive amounts only for the tradable commodities
Bj for which the ratio

ηi(Bj)
ω(Bj)

=
∫ θj

θj−1
ui dω

(θj − θj−1)
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is maximized. On the other hand, because ui is an increasing function, the map
t 7→

∫ t
0 ui dω is convex and so:

∫ θk
θk−1

ui dω

(θk − θk−1)
>

∫ θk−1
θk−2

ui dω

(θk−1 − θk−2)
> · · · >

∫ θ1
θ0

ui dω

(θ1 − θ0)
.

Because every agent demands exclusively the same k-th tradable commodity, there is
a positive excess of demand under any classification π with k ≥ 2. We conclude that
no such classification can support an equilibrium.

In Example 10 agents have additive evaluation capacities: their demands are not
affected by the width of the intervals in the classification π. This no longer holds if
a consumer exhibits SPC, because that consumer is attracted to sufficiently smaller
cells.

Example 11 (A society where every agent has SPC but ω is atomic). Consider an
economy where half of the total amount of goods correspond to the point 0 and the
other half correspond to 1. Then the measure ω has two atoms and assigns to each
F ⊆ I the value

ω(F ) = 1
2δ{0}(F ) + 1

2δ{1}(F )

There are n agents, with linear preferences based on the evaluation measure ηi(F ) =
δ{1}(F ); thus, every agent exhibits SPC.

We claim that no classification π based on k ≥ 2 intervals can support an equilib-
rium. Given any π, every agent prefers the cell B containing 1 over any other cell
and therefore demands only this commodity. This implies a positive excess of demand
for B, and the conclusion follows.

Example 11 shows how the presence of large chunks of identical goods can make
agents’ demands insensitive to changes in the classification. This cannot occur when
the measure ω is non-atomic, because the amount of goods labelled with the same
t ∈ I is negligible.

Example 12 (A society where ω is atomic and no agent has SPC, but equilibrium
exists). There are three agents. The measure ω is defined by

ω(F ) = λ
(

F ∩
[
0,

2
3

])
+ 1

3δ{1}(F ),
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where λ denotes the Lebesgue measure. Assume that the three agents have linear
preferences based on the evaluation measures:

η1(F ) =
∫

F
2t dt, η2(F ) = η3(F ) =

∫
F

2(1 − t) dt.

Note that ω has the atom {1} and that no agent has SPC.
Consider the classification π = {[0, 2/3], (2/3, 1]}. Then agent 1 demands the π-

bundle x1 = (0, 1), while agents 2 and 3 demand the π-bundle x2 = x3 = (1/2, 0).
Because ⟨π, (xa)⟩ is an allocation, we conclude that π supports an equilibrium.

One can relax some assumptions on the model in Subsection 5.2 without compro-
mising the existence result of Theorem 7. We illustrate two possible extensions.

Measure space for the goods’ characteristics. We assume that the space of
goods’ characteristics is a totally ordered set and that commodities are defined as
intervals. This can be relaxed to an abstract measure space for the goods, where
commodities are defined by measurable subsets. We sketch the main features of this
more general approach.

Let (X, F) be a measurable space. We interpret each element t in X as a complete
description of a good and each F in F as a commodity. A non-negative measure ω

on F describes the availability of goods. A classification of goods is a partition π

of X formed by finitely many sets in F with positive ω-measure. The definitions
for bundles, agents’ evaluations and equilibrium are naturally adapted to this more
general setup.

Even in this broader setting, there exists a non-trivial classification supporting an
equilibrium if ω is non-atomic and at least an agent has SPC. In fact, one can define a
family of classifications with similar properties to those formed by intervals of I and
have almost identical proofs. The main intuition is to choose an increasing family of
sets, and then mimic a “moving-knife procedure” to define partitions similar to those
formed by intervals in I.

Formally, let C = {Ct : t ∈ I} ⊆ Σ be a monotone chain such that ω(Ct) = t for
all t ∈ I. Such a chain exists by the non-atomicity of ω. A set J is a C-interval if
there exists t < s in I such that J = Cs \ Ct. Let ΠC

(≤k) be the set of classifications
formed by at least a number k ≥ 2 of C-intervals. One may extend the proof of
Theorem 7 with respect to C-intervals in X instead of intervals in I.
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Note that this more general setting has a much larger class of classifications than
I has. Therefore, although an equilibrium exists, other results may no longer hold.
For example, our proof that there exists a Pareto-optimal configuration within the
set of competitive configurations cannot be directly extended.

Weaker form of SPC. The assumption that at least an agent has SPC is re-
strictive, because it requires that there is an agent that will drastically change his
choice whenever he is offered a sufficiently concentrated commodity. From a tech-
nical viewpoint, however, this assumption is used only to show that the aggregate
demand correspondence meets some standard boundary conditions. Therefore, it can
be relaxed into a local requirement: if the interval defining a commodity is sufficiently
small, then there is at least one consumer who prefers it to all the other commodities.
More precisely, consider the following assumption of distributed SPC :

If πn = (Cn
1 , . . . , Cn

i , . . . Cn
k ) is a sequence of classifications in Π(≤k) and

ω(Cn
i ) → 0 as n → ∞, then there exists an agent whose demand for

commodity Cn
i goes to infinity as n → ∞.

Under distributed SPC, the proof of Theorem 7 holds unchanged.
Compare the import of SPC versus distributed SPC to appreciate the greater

realism of this latter. For the explanatory example in the introduction, SPC requires
that there is an agent who, given any classification, might change his choice if he
is offered another type of wine using a purer selection of grapes; distributed SPC
requires only that, for any classification, there is some agent willing to.
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